
J. Fluid Mech. (2001), vol. 437, pp. 121–142. Printed in the United Kingdom

c© 2001 Cambridge University Press

121
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The theory of solitary topographic Rossby waves (modons) in a uniformly rotating
two-layer ocean over a constant slope is developed. The modon is described by an
exact, form-preserving, uniformly translating, horizontally localized, nonlinear sol-
ution to the inviscid quasi-geostrophic equations. Baroclinic topographic modons are
found to translate steadily along contours of constant depth in both directions: either
with negative speed (within the range of the phase velocities of linear topographic
waves) or with positive speed (outside the range of the phase velocities of linear
topographic waves). The lack of resonant wave radiation in the first case is due to
the orthogonality of the flow field in the modon exterior to the linear topographic
wave field propagating with the modon translation speed, that is impossible for
barotropic modons. Another important property of a baroclinic topographic modon
is that its integral angular momentum must be zero only in the bottom layer; the
total angular momentum can be non-zero unlike for the beta-plane modons over flat
bottom. This feature allows modon solutions superimposed by intense monopolar
vortices in the surface layer to exist. Explicit analytical solutions for the baroclinic
topographic modons with piecewise linear dependence of the potential vorticity on
the streamfunction are presented and analysed.

1. Introduction
Interest in the quasi-geostrophic solitary Rossby waves (so-called modons) is motiv-

ated by the important role of the long-lived large-scale coherent vortical structures
in the dynamics of the oceans and atmospheres of the Earth and other planets. In
the ocean these are rings, inthrathermocline lenses, and mesoscale eddies of the open
ocean (e.g. Kamenkovich, Koshlyakovich & Monin 1986). In the atmosphere these are
long-lived blocking events determining the weather over vast regions (e.g. McWilliams
1980). The well-known examples of such structures are large intense eddies in the
atmosphere of Jupiter and other giant planets (e.g. Nezlin & Sutyrin 1994).

The problem of the resistance of such long-lived structures to Rossby wave disper-
sion stimulated theoretical studies of form-preserving, horizontally localized, nonlinear
solutions to the equations of rotating fluids. A stationary barotropic solution was
described by Stern (1975) who introduced the term ‘modon’, and steadily translat-
ing barotropic solutions were suggested by Larichev & Reznik (1976). On the flat
beta-plane, the basic modon solution represents a dipolar vortex pair with a charac-
teristic north–south antisymmetry. These dipoles propagate eastward at any speed, or
westward at speeds greater than the long-wave speed. It is the nonlinear vortex pair
interaction that allows the modon translation speed to be outside the range of linear
Rossby waves to avoid resonant radiation.
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Theoretical studies of modons have been extended in a number of ways in the
frameworks of both geophysical fluid dynamics and plasma physics. The stability of
modons, their collisions, influence of various factors such as friction, stratification,
bottom topography, etc. upon the modons, and some new modon solutions were
investigated. Because large-scale eddies are typically near geostrophic balance, the
quasi-geostrophic equations were primarily used in the most of the studies summarized
by Flierl (1987).

In this paper we focus our attention on the mutual effects of topography and
stratification on the modon dynamics. These factors along with the beta-effect play
key roles in the dynamics of meso- and large-scale geophysical vortices. For example,
they are especially important in the continental slope regions characterized by rather
steep slope where topography can be more significant than the beta-effect.

Up to now the effects of topography and stratification on the modons have been
studied separately. In barotropic uniformly rotating fluid with constant slope the
solutions are the same as on the beta-plane with a flat bottom. Reznik (1985) found
an explicit modon solution for the paraboloidal bottom resulting in a closed trajectory
around a seamount, while Mied, Kirwan & Lindemann (1992) constructed a family of
modons rotating steadily over isolated topographic features. Swaters (1986) calculated
analytically the evolution of barotropic modons over a slowly varying bottom relief.
The interaction of modons with topography having a wide range of scales has been
examined numerically by Carnevale et al. (1988a, b). They found that the barotropic
modons are generally quite robust and are able to propagate coherently for long
periods of time over a moderately rough bottom and smoothly varying topography.

Modon solutions in a stratified ocean with a flat bottom have also been con-
structed in a number of papers. Berestov (1979) found a three-dimensional modon
in an unbounded continuously stratified ocean. Flierl et al. (1980, referred to herein
as FLMR) analysed a wide variety of modons in a two-layer ocean and discovered
that radially symmetric perturbations (so-called riders) of a special form but arbi-
trary amplitude can be superimposed on the basic solutions. Kizner (1984, 1986,
1988, 1997) investigated the modons with riders in a stratified ocean. All modons
on the beta-plane as well as barotropic topographic modons have zero net an-
gular momentum and the translation speed is outside the range of linear Rossby
waves (except westward propagating modons with a baroclinic exterior found by
FLMR).

Recently we have described some general properties of baroclinic topographic
modons (BTMs) which distinguish them from other modons (Reznik & Sutyrin
2000). In this paper we focus on the cooperative effect of the topography and
stratification on the modon dynamics and construct various BTM solutions. The
paper is organized as follows. In § 2 the model is formulated; for simplicity we
consider the quasi-geostrophic model of a uniformly rotating two-layer ocean with
constant bottom slope. Section 3 contains a brief description of linear wave modes.
General properties of the BTMs are considered in § 4. Equations for the BTMs with
a piecewise-linear dependence of the potential vorticity on the streamlines are derived
in § 5. In § 6 the solution is given for ‘anomalously propagating’ BTMs with negative
translation speed within the range of the phase velocities of the linear topographic
waves. The structure of such unusual BTMs and the dispersion relation between their
size and propagation speed are analysed for the gravest modes. ‘Traditional’ modons
with positive translation speed outside that range are described in § 7. It is shown
that such a BTM can have superimposed on it an axisymmetric rider representing
the monopolar vortex in the upper layer with non-zero net angular momentum. The
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rider amplitude is arbitrary, thus the dipolar structure may to some extent be masked.
A summary and discussion are given in § 8.

2. The model formulation
We consider a two-layer ocean rotating with a constant angular velocity f0/2 over

a sloping bottom. Assuming the bottom slope to be sufficiently small so that the
fluid depth varies weakly on the motion scale, we use the quasi-geostrophic equations
which are expressed in the form of conservation of potential vorticity in each layer:

∂q1

∂t
+ J(Ψ1, q1) = 0, (2.1a)

∂q2

∂t
+ J(Ψ2, q2) + βT

∂Ψ2

∂x
= 0, βT =

f0

h̄2

s. (2.1b)

Here Ψ1, Ψ2 are the streamfunctions, subscripts 1, 2 correspond to the upper and
lower layers, respectively, s is the constant bottom slope. J is the Jacobian; the fluid
potential vorticities q1, q2 are given by the expressions

q1 = ∇2Ψ1 +
f2

0

g′h̄1

(Ψ2 −Ψ1), q2 = ∇2Ψ2 +
f2

0

g′h̄2

(Ψ1 −Ψ2), (2.2)

where h̄1, h̄2 are the constant mean depths of the layers, and g′ the reduced gravity.
The x-axis points along the slope and the y-axis across the slope in the direction of
decreasing depth. Thus, without loss of generality the bottom slope s is assumed to
be positive.

Introducing the length scale L using the internal Rossby scale for the lower layer,

L =

√
g′h̄2

f0

, (2.3)

and

T ∗ =
1

βTL
≡ 1

s

√
h̄2

g′
, U∗ = βTL

2 ≡ g′s
f0

(2.4)

as the time and velocity scales, respectively, we write (2.1)–(2.2) in the non-dimensional
form

∂q1

∂t
+ J(Ψ1, q1) = 0,

∂q2

∂t
+ J(Ψ2, q2) +

∂Ψ2

∂x
= 0, (2.5a, b)

q1 = ∇2Ψ1 + b(Ψ2 −Ψ1), q2 = ∇2Ψ2 + (Ψ1 −Ψ2), b = h̄2/h̄1. (2.6a, b)

Two types of stationary solutions exist for the system (2.5)–(2.6), similar to solutions
on the beta-plane with a flat bottom:

(i) arbitrary zonal flows

Ψi = Ψi(y), i = 1, 2; (2.7)

(ii) horizontally localized form-preserving vortices steadily propagating along the
slope with the speed U, i.e.

Ψi = Ψi(x−Ut, y), i = 1, 2. (2.8)

Modons represent the solutions (2.8) for (2.5) written in moving coordinates:

−U∂q1

∂x
+ J(Ψ1, q1) = 0, −U∂q2

∂x
+ J(Ψ2, q2) +

∂Ψ2

∂x
= 0 (2.9a, b)



124 G. M. Reznik and G. G. Sutyrin

In particular, a stationary vortex in the upper layer and zero velocity in the lower
layer satisfies (2.9):

U = 0, J(Ψ1,∇2Ψ1) = 0, Ψ2 = 0. (2.10a, b, c)

An important example of the state (2.10) is the radially symmetric vortex

Ψ1 = Ψ1(r), Ψ2 = 0, (2.11a, b)

where Ψ1(r) is an arbitrary function.
Obviously the upper-layer vortex that obeys (2.10) cannot remain stationary if the

beta-effect is taken into consideration because of the Rossby wave radiation.

3. Linear modes
First we consider the linear waves

Ψn = Ψw
n = An exp [i(kx+ ly − ωt)], n = 1, 2, (3.1a)

satisfying the linearized version of (2.5)–(2.6). The waves obey the following dispersion
relation:

ω =
k

κ2

κ2 + b

κ2 + 1 + b
, κ = (k, l), (3.1b)

and the amplitude ratio

A1 =
b

κ2 + b
A2. (3.1c)

From (3.1b) we see that the x-component U of the wave phase velocity is always
negative,

U =
ω

k
= − κ2 + b

κ2(κ2 + 1 + b)
< 0, (3.2)

thus the waves propagate so that the deeper water is to the left of the wavevector.
The velocity U changes between −∞ for κ → 0 and 0 for κ → ∞, similarly to the
barotropic Rossby waves.

The topographic waves (3.1) are intensified in the bottom layer, especially in the
limit of the bottom reduced-gravity model (κ2 � b for short waves or when h̄1 � h̄2).
In another limit (κ2 � b for long waves or when h̄2 � h̄1), the wave amplitude does
not depend on the depth and the wave (3.1) is nearly the barotropic Rossby wave
with β = βT .

It should be noted that the topographic wave radiation does not affect the upper-
layer potential vorticity because the potential vorticity perturbations are zero in the
upper layer for waves (3.1). Therefore, an arbitrary solution of the linearized system
(2.5)–(2.6) with a non-zero initial upper-layer potential vorticity q1 approaches with
time the state (2.10) due to dispersion of potential vorticity in the lower layer. For
example, an axisymmetric perturbation confined initially to the lower layer produces
the axisymmetric vortex (2.11) concentrated in the upper layer as t→ ∞ (see Reznik
1999 for details).

4. General properties of baroclinic topographic modons
Here we derive some general properties of the BTMs from (2.9) which can be

written in the form

J(Ψ1 +Uy, q1) = 0, J(Ψ2 +Uy, q2 + y) = 0. (4.1a, b)
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Figure 1. Schematical pattern of the modon streamlines for the upper (a) and lower (b) layers in
moving coordinates.

These equations have the first integrals

q1 = S1(Ψ1 +Uy), q2 = S2(Ψ2 +Uy)− y, (4.2a, b)

where S1(z), S2(z) are some differentiable functions.
At the open streamlines Ψi + Uy = const, i = 1, 2, which become straight lines

y = const far from the modon centre, taking x→ ±∞ in (4.2) we obtain

S1(z) = 0, S2(z) =
1

U
z. (4.3a, b)

Thus, along the open streamlines (4.2) take the form

∇2Ψ1 + b(Ψ2 −Ψ1) = 0, ∇2Ψ2 + (Ψ1 −Ψ2)− 1

U
Ψ2 = 0. (4.4a, b)

One can readily show that the linear system (4.4) does not possess non-singular
localized solutions. Therefore, the streamline pattern must contain at least one domain
with closed streamlines and the vorticity distribution within such a domain differs
from (4.3). The streamline pattern is shown schematically in figure 1. The domains
with open and closed streamlines will be referred to as exterior and interior domains,
respectively; and the streamline Γ as the separating streamline.

4.1. Exterior domain

In the exterior domain the motion is described by the system (4.4) which can be
written in terms of the normal modes

Ψ̃1 = Ψ1 + α1Ψ2, Ψ̃2 = Ψ1 + α2Ψ2 (4.5a, b)

‘decoupling’ the equations (4.4a, b) so that

∇2Ψ̃1 − p2
1Ψ̃1 = 0, ∇2Ψ̃2 − p2

2Ψ̃2 = 0. (4.6a, b)

The mode parameters αj and pj are related as follows:

p2 = b− α = 1 + 1/U − b/α (4.7)

so that

α1 = −m+
√
m2 + b, α2 = −m−

√
m2 + b, m = 1

2
(1− b+ 1/U). (4.8a, b, c)
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From (4.7)–(4.8) we see that

α1 > 0, α2 < 0 (4.9)

and

p2
1 < 0, p2

2 > 0 for U < 0, (4.10a)

p2
1 > 0, p2

2 > 0 for U > 0. (4.10b)

Localized solutions to the equations (4.6) may exist only for p2
j > 0, thus from

(4.10a) we see that the first normal mode must be zero in the exterior of the modon
moving with the negative speed U,

Ψ̃1 = Ψ1 + α1Ψ2 = 0, Ψ̃2 = Ψ1 + α2Ψ2 6= 0. (4.11a, b)

To understand the physical meaning of the condition (4.11) we consider the har-
monic wave (3.1) propagating with the same velocity U < 0. Obviously, (4.4)–(4.9)
are also valid for this wave. However, contrary to the modon case, for the harmonic
solution to the equation (4.6a) with p2

1 < 0, the second normal mode must be zero:

Ψ̃1 = Ψ1 + α1Ψ2 6= 0, Ψ̃2 = Ψ1 + α2Ψ2 = 0. (4.12a, b)

Comparing (4.11) to (4.12) we see that the external streamfunction field of the
modon moving with the ‘resonance’ negative translation speed U < 0 is orthogonal
to the streamfunction of the harmonic wave propagating with the same velocity.† It
is this orthogonality that allows the modon to not excite any harmonic waves and to
be localized. We emphasize that the conditions (4.11) are applied only in the exterior
domain; in the modon interior they are not valid (see § 5). One can say that resonant
radiation produced by the resonant component within the modon core is suppressed
by the nonlinear effects. The analogous property was also found for the Rossby
modon with baroclinic exterior in a two-layer ocean of constant depth (FLMR).

The solution in the exterior depends on the sign of U. If U < 0 then we have form
(4.5), (4.6), (4.11)

Ψ1 = − α1

α2 − α1

Ψ̃2, Ψ2 =
1

α2 − α1

Ψ̃2, (4.13a, b)

where

Ψ̃2 =

∞∑
n=1

Kn(p2r)(C2n cos nθ + D2n sin nθ). (4.14)

Here and below Kn(z), In(z) are the modified Bessel functions, and Jn(z) the Bessel
functions; r, θ are polar coordinates with their origin at the vortex centre.

For U > 0 both normal modes Ψ̃1, Ψ̃2 can be non-zero and the exterior solution is
written as

Ψ1 =
1

α2 − α1

(α2Ψ̃1 − α1Ψ̃2), Ψ2 =
1

α2 − α1

(Ψ̃2 − Ψ̃1), (4.15a, b)

where

Ψ̃j =

∞∑
n=1

Kn(pjr)(Cjn cos nθ + Djn sin nθ), j = 1, 2. (4.16)

† The scalar production of the fields P =

(
P1

P2

)
, Q =

(
Q1

Q2

)
is defined here as

P ·Q = h1P1Q1 + h2P2Q2.
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4.2. Angular momentum

To analyse the angular momentum, we consider the localized solution to (2.5)–(2.6)
decaying faster than r−2 for r → ∞. Multiplying (2.5) by x and integrating the
resulting equations throughout the plane we obtain after simple transformations∫

Ψ2 dx dy = 0,
∂

∂t

∫
x(Ψ2 −Ψ1) dx dy +

∫
xJ(Ψ1, Ψ2) dx dy = 0. (4.17a, b)

The equations (4.17) are the necessary conditions for the existence of the localized
vortices in the two-layer ocean with a sloping bottom. Thus, only the lower layer
vortex has a zero angular momentum, whereas the total angular momentum of the
localized vortex can be non-zero and the upper layer vortex can be a monopole.
We emphasize that these conditions are substantially different from the analogous
conditions on the beta-plane where the total angular momentum of the localized
vortex must be zero (Flierl et al. 1983). For the modon the condition (4.17b) is given
by ∫

Ψ1 dx dy =
1

U

∫
xJ(Ψ1, Ψ2) dx dy. (4.18)

5. Modons with linear interior vorticity distributions S1, S2

5.1. Interior solution

Following Larichev & Reznik (1976) and FLMR we assume that the interior domains
are circles of the same radius a with the linear vorticity distributions S1, S2:

Si(z) = siz + Qi, i = 1, 2, (5.1)

where the coefficients si, Qi are determined from the matching conditions at the
separating streamlines r = a.

Note that the separating streamlines need not have either the same radius or the
same centre, but such assumptions were made in the most of previous studies of
modons in order to facilitate analytical progress. A notable exception is the beta-pane
study by Pakyri & Nycander (1996) in which circular streamlines were offset a small
distance from each other in the meridional direction, which then allows a ‘hetonic’
propagation mechanism to become important.

We now substitute (5.1) into (4.2) and introduce the normal modes

Tj = Ψ1 + γjΨ2, j = 1, 2, (5.2)

that satisfy the equation

∇2Tj + k2
j Tj = −[(1 + γj)k

2
j U + γj]y + Q1 + γjQ2; (5.3)

the parameters kj , γj are related as follows:

k2 = γ − s1 − b =
b

γ
− s2 − 1 (5.4)

The solution to (5.3) can be written in the form

Tj =

∞∑
n=0

Jn(kjr)(Ajn cos nθ + Bjn sin nθ)− Q1 + γjQ2

k2
j

− (1 + γj)k
2
j U + γj

k2
j

r sin θ,

j = 1, 2, (5.5)
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where

Jn = In(kj r) for k2
j < 0. (5.6)

The interior solution is expressed by the normal modes in the form

Ψ1 =
1

γ2 − γ1

(γ2T1 − γ1T2), Ψ2 =
1

γ2 − γ1

(T2 − T1). (5.7a, b)

5.2. Conditions at the separating streamline r = a

We require the continuity of the functions Ψi and their derivatives at the separating
streamline:

Ψi

∣∣
r=a−0

= Ψi

∣∣
r=a+0

,
∂Ψi

∂r

∣∣∣∣
r=a−0

=
∂Ψi

∂r

∣∣∣∣
r=a+0

, i = 1, 2. (5.8a, b)

In addition to (5.8) one has to take into account that the circle r = a is a streamline
Ψi +Uy = Ci = const, i.e.

Ψi

∣∣
r=a±0

= −Ua sin θ + Ci, i = 1, 2. (5.9)

Obviously the conditions (5.8), (5.9) are not independent and it is sufficient to choose
the condition

Ψi

∣∣
r=a+0

= −Ua sin θ + Ci, i = 1, 2. (5.10)

instead of (5.9).
Conditions (5.8)–(5.10) are written assuming that the interior domains exist in both

the layers. If the interior domain is absent, for example, in the lower layer then the
condition (5.10) for i = 2 should be omitted.

Substitution of (4.15), (4.16) and (5.5), (5.7) into (5.8), (5.10) gives an infinite set of
linear equations for the coefficients Ajn, Bjn, Cjn, Djn. This system is greatly simplified
by the fact that for any fixed m the equations relating the parameters Ajm and Cjm
and the equations relating Bjm and Djm depend neither on each other nor on the
parameters Ajk , Bjk , Cjk , Djk for k 6= m. Moreover, the equations for these parameters
are homogeneous except the equations for Aj0, Cj0, Bj1, and Dj1. Therefore, in what
follows we assume

Ajk = Cjk = 0 for k 6= 0,

Bjk = Djk = 0 for k 6= 1.

}
(5.11)

In other words, only the axisymmetric component and the dipole proportional to
sin θ remain non-zero in the expansions (4.16), (5.5):

Ψ̃j = Cj0K0(pjr) + Dj1K1(pjr) sin θ, j = 1, 2, (5.12a)

Tj = Aj0J0(kjr) + Bj1J1(kjr) sin θ +
Q1 + γjQ2

k2
j

− (1 + γj)k
2
j U + γj

k2
j

r sin θ, j = 1, 2.

(5.12b)

The streamfunctions in the layers are represented as

Ψi = Ψ
(r)
i (r) +Ψ

(d)
i , Ψ

(d)
i = Φi(r) sin θ, i = 1, 2. (5.13a, b)

The dipole component Ψ (d)
i and the axisymmetric component Ψ (r)

i will be referred to
as the dipole modon and the rider, respectively.
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The equations determining the dipole modon Ψ (d)
i and relations between parameters

Dj1, Bj1, U, a, and kj (see below) do not depend on the parameters Aj0, Cj0, Q1, Q2, C1, C2

determining the rider. If Q1, Q2 are zero in (5.1) and Ci = 0 in (5.10) then the rider
component Ψ (r)

i in (5.13a) vanishes and the solitary wave is reduced to the dipole
modon. Therefore the dipole modon (if any) exists independent of the rider; namely
the dipole component Ψ (d)

i is the ‘engine’ forcing the solitary wave to move along
the x-axis. One can readily also check that the conditions (5.8), (5.10) provide the
continuity of the dipole modon up to the second derivatives.

6. Modons with negative translation speed
In the case U < 0 the exterior normal modes (5.12a) are represented as

Ψ̃1 = 0, Ψ̃2 = C20K0(p2r) + D21K1(p2r) = sin θ. (6.1a, b)

If the interior domains with the linear dependence (5.1) are the same in both layers,
one can readily check that the matching conditions (5.10) cannot be satisfied with
(4.13) and (6.1). Therefore, modons with negative translation speed and interior
domains in both layers may exist only if the interior domains in the upper and lower
layers are not the same as each other (cf. FLMR). Here we consider for simplicity the
case when the interior domain is absent in the lower layer, i.e. the exterior dependence
(4.3b) is valid throughout the lower layer and therefore in (5.1)

Q2 = 0, s2 = 1/U. (6.2a, b)

Then the lower-layer dynamics obey (4.4b) while the relations (5.4) take the form

k2 = γ − s1 − b =
b

γ
− 1

U
− 1. (6.3)

We now substitute the solutions (4.13), (5.7) into the conditions (5.8) and (5.10) for
i = 1. For the dipole modon we obtain after some algebra

D21 =
α2 − α1

α1

Ua

K1(p2a)
, (6.4a)

Bj1J1(kja)− (1 + γj)k
2
j U + γj

k2
j

a =
γj − α1

α2 − α1

D21K1(p2a), (6.4b)

Bj1sgn k2
j |kj |aJ2(kja) =

γj − α1

α2 − α1

D21p2aK2(p2a), (6.4c)

where j = 1, 2. Five equations (6.4) for three coefficients B11, B21, and D21 have the
two conditions of solvability:

sgn k2
j

J1(kja)

|kj |aJ2(kja)
=

K1(p2a)

p2aK2(p2a)

γj[k
2
j (1 + α1)U + α1]

k2
j U(γj − α1)

. (6.5)

Using (4.7), and (6.3) one can show that

γj[k
2
j (1 + α1)U + α1]

k2
j U(γj − α1)

= −p
2
2

k2
j

, (6.6)

therefore (6.5) is simplified to

J2(kja)

|kj |aJ1(kja)
= − K2(p2a)

p2aK1(p2a)
, j = 1, 2. (6.7)
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Figure 2. First three solutions of (6.7) for b = 1 and limiting values of p2 = 1 (solid lines) and for

p2 = (1 +
√

5)/2 (dotted lines).

If k2
j < 0 then Jm(kja) = Im(|kj |a) and (6.7) cannot be satisfied. Hence, we have

k2
j > 0 in (6.7). Equations (6.7) are exactly the same as the analogous equations for

the Rossby modon with baroclinic exterior at the beta-plane discussed in FLMR.
The parameter p2 does not depend on a, and the right-hand side of (6.7) varies
monotonically from −∞ to 0 when the radius a increases from 0 to +∞. Thus, a
countable set of the roots k̄m = kma of (6.7) exists within the range between the roots
of J1 and J2. Any two of them have to obey the relation that simply follows from
(6.3): (

k̄2
1

a2
+ 1 +

1

U

)(
k̄2

2

a2
+ 1 +

1

U

)
= −b. (6.8)

For negative translation speed, solutions to (6.8) may exist only for −1 < U < 0,
so that (4.7) provides the limits for the external parameter p2:

b < p2
2 <

1
2
(b+

√
b2 + 4b). (6.9)

The boundaries of the first three roots k̄m(a) of (6.7) for limiting values (6.9) of p2 are
shown in figure 2 for the depth ratio b = 1.

The system (6.7), (6.8) consists of three equations for four parameters k̄1, k̄2, U, a.
Therefore, for a fixed a, we can find two branches of U from (6.8), assuming k̄1, k̄2

are within the ranges shown in figure 2:

U+ =
2a2

2a2 + (k̄2
1 + k̄2

2 + G)
, U− =

2a2

2a2 + (k̄2
1 + k̄2

2 − G)
, (6.10)

where

G2 = (k̄2
2 − k̄2

1)2 − 4a4b. (6.11)

Asymptotically for a2 � k̄2
1 we obtain from (6.10), (6.11) U+ ≈ −a2/k̄2

2, and U− ≈
−a2/k̄2

1. These branches match each other at a = amax which can be estimated
assuming G2 = 0 in (6.11):

a2
max =

1

2
√
b

[(k̄2
2)max − (k̄2

1)min]. (6.12)
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Figure 3. Modon with negative translation speed. Dependence of the propagation speed U on the

modon radius a for limiting values of p2 =
√
b (solid lines) and p2(Umax) (dotted lines) when b = 1

and b = 4.

The solutions (6.10) cease to exist for a > amax. the existence of a maximum size
for this kind of modon with negative translation speed is related to the maximum
difference in the values of roots (k̄2

2)max− (k̄2
1)min as seen in (6.12). Correspondingly, as

one can find by estimating the minimum of (6.10), the modon propagation speed is
limited by

U > −Umax, Umax =
a2
max

a2
max + (k̄2)min(k̄1)min

. (6.13)

Thus, the boundaries of the branches given by (6.10) can be narrowed with k̄1(a), k̄2(a)
calculated from (6.7) with limiting values of p2 =

√
b and p2(Umax). Figure 3 shows

these boundaries for the dispersion relation U(a) with the gravest roots k̄1(a), k̄2(a)
for different depth ratios. They visually coincide and one can see that both amax and
Umax decrease when b increases, in agreement with (6.12) and (6.13).

The streamline pattern in the lower layer is dominated by the first normal mode,
T1, which has a dipolar character with two vortex centres. In the upper layer the flow
also has two vortex centres for the slower branch U+ (figure 4), while the presence of
the second normal mode, T2, with four centres can be seen for the faster branch U−
(figure 5). The amplitude ratio max(|Ψ2|)/max(|Ψ1|) increases with the modon size a.

The axisymmetric modon component (rider) is determined by four coefficients Q1,
A10, A20, and C20 satisfying four equations:

Q1

k2
j

+ Aj0J0(kja) =
γj − α1

α2 − α1

C20K0(p2a), (6.14a)

kjAj0J1(kja) =
p2(γj − α1)

α2 − α1

C20K1(p2a). (6.14b)

The solvability condition for the homogeneous linear system (6.14) can be written as

k2
1(γ1 − α1)

[
J0(k1a)

k1J1(k1a)
− K0(p2a)

p2K1(p2a)

]
= k2

2(γ2 − α1)

[
J0(k2a)

k2J1(k2a)
− K0(p2a)

p2K1(p2a)

]
. (6.15)

Using (4.7), (6.3), and (6.7) one can show that (6.15) is satisfied. Thus the axisym-
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Figure 4. Modon with negative translation speed. An example of the upper layer dipole

streamfunction (−Ψ1/U) for the slower branch U+ when a =
√

2 and b = 1.
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Figure 5. Modon with negative translation speed. An example of the upper layer streamfunction

(−Ψ1/U) with four vortex centres for the faster branch U− when a =
√

2 and b = 1.

metric rider exists and is determined by the axisymmetric parts of the fields (5.5),
(5.7) and (4.15), (6.1) with the coefficients

Aj0 =
p2(γj − α1)

α2 − α1

K1(p2a)

kjJ1(kja)
C20, (6.16a)

Q1 = k2
1

γ1 − α1

α2 − α1

[
K0(p2a)− p2K1(p2a)J0(k1a)

kjJ1(k1a)

]
C20. (6.16b)

Here C20 (and therefore the rider amplitude) is arbitrary. The rider streamfunction
is continuous, as are its first derivatives. Note, that the angular momentum of the
rider constructed is zero in each layer due to the absence of the interior domain in
the lower layer. To show this we integrate (4.4b) throughout the plane; from (4.17a)
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we obtain ∫
Ψ1 dx dy = 0. (6.17)

The same is valid when the interior domain is absent in the upper layer and (4.4a)
is satisfied throughout the plane. In the next Section we show that the total angular
momentum of a BTM possessing internal domains in both layers and moving with
positive U can be non-zero.

7. Modons with positive translation speed
We now consider the modons moving with a positive translation speed U > 0 and

possessing identical interior domains in both layers. The solution in this case is given
by (4.15), (5.7) together with (5.12).

The conditions at the separating streamline for the dipole modon can be written
as

1

α2 − α1

[α2D11K1(p1a)− α1D21K1(p2a)] = −Ua, (7.1a)

1

α2 − α1

[D21K1(p2a)− D11K1(p1a)] = −Ua, (7.1b)

Bj1J1(kja)− (1 + γj)k
2
j U + γj

k2
j

a =
1

α2 − α1

[(α2 − γj)D11K1(p1a)

+(γj − α1)D21K1(p2a)], (7.1c)

Bj1sgn k2
j |kj |aJ2(kja) =

1

α2 − α1

[(α2 − γj)D11p1aK2(p1a) + (γj − α1)D21p2aK2(p2a)].

(7.1d)

It readily follows from (7.1a, b, c) that

D11 = −(1 + α1)
Ua

K1(p1a)
, D21 = −(1 + α2)

Ua

K1(p2a)
, Bj1 =

γja

k2
j J1(kja)

. (7.2a, b, c)

Substituting (7.2) into (7.1d) we obtain after some algebra two conditions of solvability
of the system (7.1):

J2(kja)

|kj |J1(kja)
=
M(U, a)

γj
+N(U, a), j = 1, 2, (7.3a)

where

M =
U

α1 − α2

[
α2(1 + α1)

p1K2(p1a)

K1(p1a)
− α1(1 + α2)

p2K2(p2a)

K1(p2a)

]
, (7.3b)

N =
U

α1 − α2

[
(1 + α2)

p2K2(p2a)

K1(p2a)
− (1 + α1)

p1K2(p1a)

K1(p1a)

]
. (7.3c)

It is convenient to express γj in terms of kj in (7.3a). To do this we use the following
relations, which simply follow from (6.3):

k2
1 − k2

2 = γ1 − γ2, γ1γ2 = −b. (7.4a, b)
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Figure 6. Modon with positive translation speed. Solid and dashed lines correspond to the equations
(7.9a) and (7.9b), respectively for U = a = 1, and b = 1. The points of intersection are the roots
k1, k2 of the system (7.9). (a) case 1, (b) case 2.

By virtue of (7.4) the pair of parameters γ1, γ2 can be expressed in terms of k1, k2 in
two ways:

γ
(1)
1 = 1

2
(k2

1 − k2
2) +

√
1
4
(k2

1 − k2
2)2 − b, γ

(1)
2 = − 1

2
(k2

1 − k2
2) +

√
1
4
(k2

1 − k2
2)2 − b,

(7.5a, b)

γ
(2)
1 = 1

2
(k2

1 − k2
2)−

√
1
4
(k2

1 − k2
2)2 − b, γ

(2)
2 = − 1

2
(k2

1 − k2
2)−

√
1
4
(k2

1 − k2
2)2 − b.

(7.6a, b)

Without loss of generality we assume

k2
1 > k2

2 . (7.7)

In this case by virtue of (7.5), (7.6)

k2
1 − k2

2 > 2
√
b. (7.8)

One can show that k2
1 > 0 (see the Appendix); in what follows we assume that k2

2 is
also positive† and therefore using (7.4b) equations (7.3a) are reduced to the system

J2(k1a) + k1J1(k1a)

[
M(U, a)

b
γ2 −N(U, a)

]
= 0, (7.9a)

J2(k2a) + k2J1(k2a)

[
M(U, a)

b
γ1 −N(U, a)

]
= 0. (7.9b)

Here γ1, γ2 is one of the pairs (7.5), (7.6). The pairs (7.9), (7.5) and (7.9), (7.6) will be
referred to as cases 1 and 2 respectively.

† We cannot prove rigorously that k2
2 > 0 in general case but analysis of the opposite case k2

2 < 0
for particular values of the parameters U, a shows that the solution does not exist.
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Figure 7. Modon with positive translation speed. Case 1. The dipole streamlines in the upper (top)
and lower (bottom) layers for the lowest (a) and the second (b) pairs of the parameters k1, k2.
U = a = 1, b = 1.

Given U, a equations (7.9) are curves on the plane k1, k2. In case 1 these curves are
show in figure 6; the intersection points correspond to the roots k1, k2. (Note that the

results in figures 6–11 are obtained using the internal Rossby scale, L =
√
g′h̄/f0,

h̄ = h̄1h̄2/(h̄1 + h̄2), instead of the length scale (2.3).) The dipole streamfunctions are
represented in figures 7, 8 for b = 1 and b = 4, respectively. For the first roots
k

(1)
1 , k(1)

2 the streamfunctions are simple dipoles in both layers; for the other roots the
dipole structure is more complicated. Note that the dipole streamfunctions depend
very weakly on the depth ratio b.

The coefficients in (4.16), (5.5) determining the rider component are also
found from the conditions at the separating streamline (5.8); after some algebra
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Figure 8. As figure 7 but for b = 4.

we have

Aj0 =
1

(α2 − α1)kjJ1(kja)
[p1(α2 − γj)C10K1(p1a) + p2(γj − α1)C20K1(p2a)], (7.10a)

Q1 + γjQ2

k2
j

=
1

(α2 − α1)
[(α2 − γj)C10K0(p1a) + (γj − α1)C20K0(p2a)]− Aj0J0(kja).

(7.10b)

Here the coefficients C10, C20 are arbitrary.
Using (4.15), (4.16), (5.5), (5.7), and (7.10) one can calculate the rider streamfunction.

The radial profiles of the streamfunction in the layers are shown in figure 9. We see
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Figure 9. Modon with positive translation speed. Case 1. The radial profiles of the rider stream-
functions for the first (upper panels, lower layer streamfunction is shown by dashed line) and the
second (middle and bottom panels) pairs of the parameters k1, k2: U = a = 1, C10 = C20 = 1.
(a) b = 1, (b) b = 4.

that the upper-layer rider streamfunction is a monopole, whereas in the lower layer
the streamfunction changes its sign to meet the condition (4.17a) of zero angular
momentum. Note that the upper and lower vortices are counter-rotating in the
modon core (interior domain). For the first root the amplitudes of these vortices
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Figure 10. Modon with positive translation speed. Case 2. The dipole streamlines in the upper
(top) and lower (bottom) layers for the first pairs of the parameters k1, k2; U = a = 1. (a) b = 1,
(b) b = 4.

are comparable, for the second root the rider is confined mainly to the upper-layer
interior domain.

Analogous results for case 2 are given in figures 10 and 11. The dipole structure
is complicated even for the first root: the upper-layer streamfunction consists of four
vortices. The riders are again confined mainly to the upper-layer interior domain but
the streamfunction changes its sign in both layers. Contrary to the previous case the
upper and lower vortices in riders are co-rotating in the modon core.

Note that riders with zero net angular momentum constructed for the barotropic
modons on the beta-plane have a discontinuity in radial vorticity at the separating
streamline and they were demonstrated numerically to be unstable (Swenson 1987).
However, it was found by Kizner (1997) that in stratified fluid riders with a continuous
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Figure 11. Modon with positive translation speed. Case 2. The radial profiles of the rider stream-
functions for the first pair of the parameters k1, k2; U = a = 1, C10 = C20 = 1. (a) b = 1,
(b) b = 4.

vorticity profile exist. Numerical investigation of these riders shows that they can be
remarkably stable (Z. I. Kizner 2000, private communication). The question of whether
the riders with non-zero angular momentum presented here are stable is a subject of
future studies.

8. Relations to other modon solutions
To clarify the cooperative effects of the stratification and topography on the BTM

dynamics and relations to other modon solutions we consider how the present modon
solutions behave in the limits of infinite (b→ 0) or zero (b→∞) upper-layer depth.

In the first case, the upper-layer equation (2.5a) is reduced to the equation for two-
dimensional non-rotating fluid which does not possess localized solutions. Therefore,
in the limit of infinite upper-layer depth the localized solutions may exist only if the
upper layer is at rest. Then (2.5b) describes the equivalent-barotropic model on the
topographic beta-plane which allows well-known modon solutions (e.g. Larichev &
Reznik 1976; FLMR).

For the BTM solutions with negative translation speed considered in § 6, −1 <
U < 0, and they do not tend to the equivalent-barotropic solutions with U < −1
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because we assume that there is no interior domain in the lower layer. Rather they
become non-localized because for the exterior field p2 → 0 when b→ 0 as seen from
(6.9).

For the BTM solutions with positive translation speed considered in § 7, the
interior domain exists in each layer. One can see from (4.7) that p1 → 0, and p2

2 →
1 + 1/U. Analysis of the dispersion relations (7.3)–(7.5) shows that the upper-layer
streamfunction Ψ1 tends to the non-localized Lamb’s dipole which is proportional to
r−1 sin θ in the exterior domain. The lower-layer limiting state can be represented as
a linear combination of the Lamb dipole, equivalent-barotropic modon, and a rather
complicated field confined to the interior domain. Thus, the limiting BTM solutions
for b → 0 does not tend to any localized solutions of the corresponding limiting
equations.

Similar behaviour is found in another limit of zero upper-layer depth (b → ∞).
The BTM solutions with negative translation speed also degenerate because their
maximum size tends to zero as seen from (6.12). For the BTM solutions with positive
translation speed, p2

1 → 1/U and p2 →∞, so that in this limit the first exterior mode
corresponds to eastward propagating modon solutions for barotropic fluid while the
second exterior mode vanishes. The dispersion relations (7.3)–(7.5) show that if k2

is O(1), then k1 � 1. Correspondingly, the modon interior consists of the smooth
component T2 and rapidly oscillating component T1.

In summary, we see that the BTM solutions with negative translation speed and
no interior domain in lower layer cease to exist at both limits, i.e. they result from
cooperative effects of stratification and topography. The BTM solutions with positive
translation speed can be considered as a generalization of eastward-propagating well-
localized modons either for barotropic or equivalent-barotropic models. Their new
feature of non-zero net angular momentum is also a result of cooperative effects of
stratification and topography.

9. Summary and conclusion
We have investigated the cooperative effect of stratification and bottom topography

on modon dynamics using the model of a uniformly rotating two-layer ocean with
a sloping bottom. The general properties of the BTM were studied and the exact
solutions for the modons with piecewise-linear dependence of the potential vorticity
on the streamfunction were given and analysed.

Two results are particularly important. The first result is that the BTM in a stratified
ocean is able to move with a speed within the range of the phase velocities of linear
topographic waves. The lack of resonant radiation in this case is conditioned by the
orthogonality of the streamfunction field in the modon exterior to the corresponding
field of the linear topographic wave propagating with the modon translation speed.
At the same time the streamfunction in the modon core (interior domain) is not
orthogonal to the linear wave streamfunction, i.e. the modon core ‘contains’ the
resonant mode. One can say that the nonlinearity prohibits the radiation due to this
mode. A solution with similar properties also exists in a two-layer ocean of constant
depth on the beta-plane. This is the Rossby modon with purely baroclinic exterior
found in FLMR.

This effect broadens the range of modon translation speeds and can be useful when
modelling blocking events in the Earth’s atmosphere. McWilliams (1980) pointed out
that one of the impediments to the use of barotropic modons as such a model is
related to the modon’s inability to drift westward with a speed within the range of
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the Rossby wave phase speeds. The solution presented shows that this shortcoming
can be avoided if the model of blocking events incorporates the stratification and
the bottom topography. Note that the planetary beta-effect plays dominant role in
the atmosphere and it should be taken into account together with the topography to
allow applicability of the BTM solutions to the atmospheric coherent structures. Our
work in this direction is in progress and the results will be reported elsewhere.

The second important result making the BTMs significantly different from their
beta-plane analogues (see Flierl, Stern & Whitehead 1983) is that the total angular
momentum of the vortex over a sloping bottom can be non-zero. More exactly,
the integral angular momentum in the bottom layer should be zero; the upper layer
angular momentum can be non-zero. This feature provides for the existence of modons
carrying axisymmetric riders representing intense monopolar vortices confined to the
upper layer. As the rider amplitude is arbitrary the dipole component can be ‘masked’
and the composed modon looks like a monopole. This property is especially interesting
since the majority of the observed long-lived vortices are monopoles.

The authors thank Professor Z. Kizner (BIU) for a helpful discussions and
anonymous reviewers for valuable remarks. This study was supported by Russian
Foundation for Basic Research Grant #99-05-64841 and the USA National Science
Foundation Grant ATM-9905209

Appendix
Using (7.3a), (7.4b) one can show that

[R1(k1, a)−N][R2(k2, a)−N] =
M2

b
, Rj(kj , a) =

J2(kja)

|kj |J1(kja)
. (A 1)

By virtue of (4.8b, c)

1 + α2 < 0 for U > 0 (A 2)

whence

N < 0. (A 3)

Then at least one of the quantities R1, R2(k
2
1 , k

2
2) should be negative (positive) and

therefore (see (7.7))

k2
1 > 0. (A 4)
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